Kelvin Smith Library
Category Theory for Computing Science
by
Michael Barr; Charles Wells
A wide coverage of topics in category theory and computer science is developed in this text, including introductory treatments of cartesian closed categories, sketches and elementary categorical model theory, and triples.
Symmetries and Laplacians
by
David Gurarie
Designed as an introduction to harmonic analysis and group representations, this book covers a wide range of topics.
Probability Theory and Harmonic Analysis
by
Chao; W. A. Woyczynski
Papers from the Mini-Conference on Probability and Harmonic Analysis held in Cleveland, Ohio, May 10-12, 1983.
Toposes, Triples, and Theories
by
M. Barr; C. H. Wells
This book introduces three key concepts and their connections. A topos is a type of generalized set theory, while the concept of triple initially emerged as "standard constructions" in Godement's book on sheaf theory for computing sheaf cohomology. Later, Peter Huber discovered that triples contain much of the information of adjoint pairs. Linton also discovered that triples offer an equivalent approach to Lawvere's theory of equational theories, or rather, the infinite generalizations of that theory.